Bibliografía. Dinámica celeste

home.gif (1232 bytes)up.gif (1005 bytes)

Fuerza central y
La Tierra, la Luna, 
el Sistema Solar

marca.gif (847 bytes)Bibliografía


Aguirregabiria J. M. Hernández A., Rivas M. Teaching about central forces. Letters to the Editor. Am. J. Phys. 72 (7) July 2004, pp 855

Amengual A. Sobre la órbita heliocéntrica de la Luna. Revista Española de Física, Vol 16, nº 5, 2002, págs. 50-51.

Arons. A. A F=ma analysis of the spinning skater and decaying satellite orbit. The Physics Teacher 37, March 1999, pp. 154-160

Arons A. B. Basic physics of the semidiurnal lunar tide. Am. J. Phys. 47 (11) November 1979, pp. 934-937

Babovic, V. M. Davidovic, D. M., Anicin, B. A. The Doppler interpretation of Rǿmer's method. Am. J. Phys. 59 (6) June 1991, pp. 515-519

Bacon R. H. Logarithmic spiral: An ideal trajectory for interplanetary vehicle with engines of low sustained thrust. Am. J. Phys. 27 (1959), pp. 164-165.

Bernard Cohen. Descubrimiento newtoniano de la gravitación. Investigación y Ciencia, nº 56, Mayo 1981, págs. 111-120.

Blitzer L. Maximum range of a projectile in vacuum on a spherical Earth. Am. J. Phys. 25 (1957), pp. 21-24

Bolemon. Shape of the rotating planets and the Sun: A calculation for elementary mechanics. Am. J. Phys. 44 (11) November 1976, pp. 1125-1128.

Boyd J. N., Raychowdhury P. N., Coriolis acceleration without vectors. Am. J. Phys. 49 (5) May 1981, pp. 498

Butikov E. Families of Keplerian orbits. Eur. J. Phys. 24 (2003) pp. 175-183

Butikov E. A dynamical picture of the oceanic tides. Am. J. Phys. 70 (10) October 2002, pp. 1001-1011

Butikov E. I. Relative motion of orbiting bodies. Am. J. Phys. 69 (1) January 2001, pp. 63-67

Boyd, Raychowdhury. Coriolis without vectors. Am. J. Phys. 49 85) 1981, pp. 498-499.

Bringuier E. Eccentricity as a vector: a concise derivation of the orbit equation in celestial mechanics. Eur. J. Phys. 25 (2004) pp. 369-372

Burko L. M. Effect of the spherical Earth on a simple pendulum. Eur. J. Phys. 24 (2003), pp. 125-130

Cartier P. Kepler y la música del mundo. Mundo Científico, V-15, nº 161, Octubre 1996.

Carcavilla A. Explicación elemental de la precesión de algunas órbitas. Revista Española de Física, V-5, nº 2, 1991, págs. 45-47.

Cid Ramón. El fenómeno de las mareas: su aplicación a la enseñanza de la Física. Revista Española de Física 5(2) 1991, págs. 48-51

Cohen, B. Descubrimiento newtoniano de la gravedad. Investigación y Ciencia, nº 56, Mayo 1981, págs. 110-120.

Díaz-Jiménez A. Astronautical velocities. Am. J. Phys. 51(8) August 1983, pp. 749

Drake S. La manzana de Newton y el diálogo de Galileo. Investigación y Ciencia, nº 49, Octubre 1980, págs. 106-112.

Edgar S. B. Planetary and satellite motion as exercises in kinematics. Eur. J. Phys. 10 (1989), pp. 30-34.

Freedman R. A., Helmy I., Zimmerman P. D. Simplified navigation for self-propelled astronauts. Am. J. Phys. 43 (5) May 1975, pp. 438-440

Galilli I, Lehavi Y. The importance of weightlessness and tides in teaching gravitation. Am. J. Phys. 71 (11) November 2003, pp. 1127-1135

Grǿn Ǿ. A tidal force pendulum. Am. J. Phys. 51 (5) May 1983, pp. 429-431

Harmon N. J. Leidel C., Lindner J. F. Optimal exit: Solar escape as a restricted three-body problem. Am. J. Phys. 71(9) September 2003, pp. 871-877

Härtael H. The tides -a neglected topic. Phys. Educ. (35) 2000, pp. 40-45.

Hauser W. On planetary motion. Am. J. Phys. 53 (9) September 1985, pp. 905-907

Hernández M. Fuerza y Movimiento. Revista Española de Física, Vol 10, nº 2, 1996. págs. 44-51.

Hyman A. T. A simple cartesian treatment of planetary motion. Eur. J.  Phys. 14 (1993), pp. 145-147.

Iona M. Why is g larger at the poles?. Am. J. Phys. 46 (8) August 1978, pp. 790-791.

Kapoulitsas G. On the generation of tides. Eur. J. Phys. 6 (1985) pp. 201-207

Laporte O., On Kepler ellipses starting from a point of space. Am. J. Phys. 38 (7) July 1970, pp. 837-840

de Levie R.. Tidal analysis on a spreadsheet. Am. J. Phys. 72 (5) May 2004, pp. 644-651

Márov M. Planetas del Sistema Solar. Editorial Mir.

Mills B.D. Satellite paradox. Am. J. Phys. 27 (1959) pp. 115-117

Mohazzabi P. Free fall and angular momentum. Am. J. Phys. 67 (11) November 1999, pp. 1017-1020

Mohazzabi P, James M. Plumb line and the shape of the earth. Am. J. Phys. 68 (11) November 2000, pp. 1038-1041

Mohazzabi P., Luecke J. Asteroid impact and eccentricity of Earth’s orbit. Am. J. Phys. 71 (7) July 2003, pp. 687-690

Moreno González. "Pesar" la Tierra: Test Newtoniano y origen de un anocronismo. Enseñanza de las Ciencias 18 (2), 2000, págs.319-332.

Motz L. The consevation principles and Kepler's laws of planetary motion.. Am. J. Phys. 43 (7) July 1975, pp. 575-578.

Muñoz G. Vector constants of the motion and orbits in the Coulomb/Kepler problem. Am. J. Phys. 71 812) December 2003, pp. 1292-1293

Noll E. Kepler’s Third Law for elliptical orbits. The Physics Teacher, vol 34, January 1996, pp. 42-43.

Noll E. D. Teaching Kepler's law as more than empirical statements. Physics Education 37 (3) May 2002, pp.245-250

Olivares Campillo S., La curvatura en el periastro y el problema de Kepler. Revista Española de Física, 18 (2) Abril-Junio 2004, págs. 34-36

Osler T. An unsual approach to Kepler's first law. Am. J. Phys. 69 (10) October 2001. pp. 1036-1038.

Rees. The sideways deflection of a falling body. Eur. J. Phys. 7 (1986) pp. 274-277.

Reddingius E., Comment on "The eastward deflection of a falling object" Am. J. Phys. 52 (6) June 1984, pp. 562

Renault J, Okal E. Investigating the physical nature of the Coriolis effects in the fixed frame. Am. J. Phys. 45 (7) 1977, pp. 631-633.

Romer R. The answer is forty-two. Many mechanics problems, only one answer. The Physics Teacher, 41, may 2003, pp. 286-290

Roy A. E. Astrodynamics. Phys. Educ. 1977, pp. 445-451

Ruby L. Gravitation force due to a sphere: A non calculus calculation. The Physics Teacher, Vol. 41, October 2003, pp. 416-418

Sawicki M. Myths about gravity and tides. THe Physics Teacher 37, October 1999, pp. 438-441

Shea J. H., Ole Rǿmer, the speed of light, the apparent period of Io, the Doppler effect, and the dynamics of Earth and Jupiter. Am. J. Phys. 66 (7) July 1988, pp. 561-569

Sheppard D. Using one pendulum and a rotating mass to measure the Universal Gravitational Constant. Am. J. Phys. 38 (1970), pp. 380

Seligmann P., Steinberg M. Simple hydrodynamic treatment of ocean tides. Am. J. Phys. 43 (12) December 1975, pp. 1106-1108.

Sivardière J. A simple look at Kepler motion. Am. J. Phys. 56 (2) February 1988, pp. 132-135

Snyder R. Two-density model of the Earth. Am. J. Phys. 54 (6) June 1986, pp. 511-513

Stinner A., Bergoray J. Journey to Mars: the physics of travelling to the red planet. Physics Education, 40 (1) January 2005, pp. 35-45.

Strnad J. On projectiles, missiles and history. Eur. J. Phys. 23 (2002) pp. 361-365

Tan A. Kepler ellipse. Am. J. Phys. 47 (8) August 1979, pp. 741-742

Tan A., Chameides W. L. Kepler's third law. Am. J. Phys. 49 (7) July 1981, pp. 691-692

Trier A. El problema de Kepler: una presentación alternativa. Revista Española de Física, V-6, nº 3, 1992, págs. 33-34.

Topper, Vicent. An analysis of Newton's projectile diagram. Eur. J. Phys 29 (1999) pp. 59-66

Tsantes E. Note on tides. Am. J. Phys. 42, April 1974, pp. 330-333

Turcotte S. B. Orbital timing for a mission to Mars. The Physics Teacher, Vol. 43, May 2005, pp. 293-296

Van Allen J. Gravitational assist in celestial mechanics- a tutorial. Am. J. Phys. 71 (5) May 2003, pp. 448-451.

Vogt E. Elementary derivation of Kepler's laws. Am. J.  Phys. 64 (4) April 1996, pp. 392-396.

West J. O., The Atwood machine: two special cases. The Physics Teacher Vol. 37, February 1999, pp. 83-85

Wild J. F.. Simple non-Coriolis treatment for explaining terrestrial East-West deflections. Am. J. Phys. 41 (1973) pp. 1057-1059.

Wild W. J. Euler's three-body problem. Am. J. Phys. 48(4) April 1980, pp. 297-301