El oscilador de Morse

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Oscilaciones

Osciladores (II)
Oscilaciones
anarmónicas
Molécula diatómica
marca.gif (847 bytes)El oscilador Morse
Oscilaciones de un
cilindro que rueda.
Movimiento de
un pistón
Descripción cualitativa del movimiento de la partícula

Movimiento de la partícula

Actividades

Referencias

 

En esta página, se va a estudiar el movimiento de una partícula de masa m bajo la acción de una fuerza F(x), cuyo potencial viene descrito por la función, denominada potencial de Morse

El potencial presenta un mínimo para x=0 cuyo valor es Ep(x0)=-D.

  • Cuando x→∞, la función Ep(x) tiende a cero.

  • Cuando x→-∞, la función Ep(x) tiende a infinito.

En la figura, se muestra la gráfica de la función Ep(x) para k=1, y D=1

 

Descripción cualitativa del movimiento de la partícula

Dada la función Ep(x), la fuerza F(x) que actúa sobre la partícula es

 

Para x=0, F(x)=0, el origen es una posición de equilibrio estable, ya que la energía potencial es mínima.

La fuerza sobre la partícula se obtiene midiendo la pendiente en cada punto de la función energía potencial Ep(x) cambiada de signo.

  • Si la partícula está situada en la posición A, la pendiente es negativa, la fuerza es positiva, la pendiente es grande en módulo, la fuerza es grande.

  • Si la partícula está situada en la posición B, la pendiente es positiva, la fuerza es negativa, la pendiente es pequeña, la fuerza es pequeña.

Como la fuerza que actúa sobre la partícula es conservativa, la energía total E permanece constante.

Dibujando función la energía potencial Ep(x), y conociendo el valor de la energía total E podemos describir de forma cualitativa el movimiento de la partícula.

  1. Cuando la energía total E está en el intervalo -D<E<0, la partícula oscila entre dos posiciones x1 y x2 alrededor de la posición de equilibrio estable x=0.

Estas dos posiciones son las raíces de la ecuación Ep(x) =E

Si la partícula está situada en la posición P, la energía total es la medida del segmento PA, la energía potencial el segmento PB y la energía cinética el segmento AB.

La energía cinética es máxima cuando la partícula pasa por el origen, y es nula cuando la partícula pasa por en las posiciones extremas x1 y x2.

  1.  Cuando E>0, la partícula se mueve desde el infinito, hasta una posición xm y regresa de nuevo al infinito.

Cuando E>0, la ecuación Ep(x) =E solamente tiene una raíz

Si la partícula está situada en la posición P, la energía total es la medida del segmento PA, la energía potencial el segmento PB y la energía cinética el segmento AB.

La energía cinética es máxima cuando la partícula pasa por el origen, y es nula cuando la partícula está en la posición extrema xm

 

Movimiento de la partícula

Si definimos el parámetro adimensional ρ tal que E+D=ρ·D

  1. La partícula está confinada, si ρ<1 en la región

  1. La partícula se mueve hacia el infinito si ρ>1

  1. La partícula se mueve hacia el infinito si E=0 ó ρ=1

Vamos a determinar la posición x de la partícula en función del tiempo t para cada uno de los casos, integrando una ecuación diferencial de primer orden. Escribimos el principio de conservación de la energía de la forma

  1. Estudiamos el caso ρ<1

Hacemos el cambio de variable

La ecuación diferencial de primer orden se transforma, haciendo algunas operaciones, en una ecuación diferencial fácilmente integrable

arccos u=γt-γt0
u
=cos(γt-γt0)

γt0 es la constante de integración que se determina a partir de las condiciones iniciales, la posición x0 del móvil en el instante t=0.

Deshaciendo el cambio

En el programa interactivo, la posición inicial de la partícula t=0, es el origen x=0, el instante t0 vale entonces,

  1. Estudiamos el caso ρ>1

Hacemos el cambio de variable

La ecuación diferencial de primer orden se transforma, haciendo algunas operaciones, en una ecuación diferencial fácilmente integrable

arccosh u=γt-γt0
u
=cosh(γt-γt0)

γt0 es la constante de integración que se determina a partir de las condiciones iniciales, la posición x0 del móvil en el instante t=0.

Deshaciendo el cambio

En el programa interactivo, la posición inicial de la partícula t=0, es el origen x=0, el instante t0 vale entonces

  1. En el caso límite ρ=1

Hacemos el cambio de variable

La ecuación diferencial de primer orden se transforma, haciendo algunas operaciones, en una ecuación diferencial fácilmente integrable

2u-1=(γt-γt0)2

γt0 es la constante de integración que se determina a partir de las condiciones iniciales, la posición x0 del móvil en el instante t=0.

Deshaciendo el cambio

En el programa interactivo, la posición inicial de la partícula t=0, es el origen x=0, el instante t0 vale entonces,

Ejemplo:

  • Valor del parámetro k=1

  • Valor del parámetro D=1

  1. Energía total de la partícula E=-0.5

El parámetro ρ=(E+D)/D=0.5<1

La partícula se mueve entre las posiciones extremas

La ecuación del movimiento es

En el instante t=2.0, la posición de la partícula es x=0.41.

La energía potencial es

La energía cinética Ek=E-Ep=0.387

La velocidad de la partícula

  1. Energía total de la partícula E=0.5

El parámetro ρ=(E+D)/D=1.5>1

La partícula se mueve desde el origen hasta la posición

La ecuación del movimiento es

En el instante t=2.0, la posición de la partícula es x=1.10

La energía potencial es

La energía cinética Ek=E-Ep=1.05

La velocidad de la partícula v=1.45

  1. Energía total de la partícula E=0

El parámetro ρ=(E+D)/D=1

La partícula se mueve desde el origen hasta la posición

La ecuación del movimiento es

En el instante t=2.0, la posición de la partícula es x=0.77

La energía potencial es

La energía cinética Ek=E-Ep=0.71

La velocidad de la partícula v=1.19

 

Actividades

Se introduce

  • El parámetro k de la función energía potencial Ep(x), actuando en la barra de desplazamiento titulada Parámetro.

  • El parámetro D se ha fijado en el valor 1

  • La energía total E de la partícula, actuando en la barra de desplazamiento titulada Energía.

Se pulsa el botón titulado Empieza

Si la energía E de la partícula está en el intervalo -1<E<0, la partícula oscila entre dos posiciones x1 y x2.

Si la energía E de la partícula es positiva o nula, la partícula se mueve desde el origen hasta la posición extrema xm y desde esta posición hacia el infinito.

Se indica mediante un segmento de color azul, el valor de la energía potencial, mediante un segmento de color rojo el valor de la energía cinética, y mediante una flecha la fuerza sobre la partícula.

En la parte superior del applet, se proporcionan valores numéricos del tiempo t,  la posición x, módulo de la velocidad v, energía potencial Ep, energía cinética Ek.

 
ForzadasApplet aparecerá en un explorador compatible con JDK 1.1.

 

Referencias

DeMarcus W. C. Classical motion of a Morse oscillator. Am. J. Phys. 46 (7) July 1978, pp. 733-734