La confrontación era inevitable. J. Robert Oppenheimer y John Archibald Wheeler, tenían puntos de vista tan diferentes sobre el Universo y sobre la condición humana que una y otra vez se encontraban en bandos opuestos acerca de cuestiones profundas: seguridad nacional, política de armas nucleares, agujeros negros...

El escenario fue una sala de conferencias en la Universidad de Bruselas. Oppenheimer y Wheeler, vecinos en Princeton, Nueva Jersey, se habían reunido allí, junto con otros treinta destacados físicos y astrónomos de todo el mundo, para discutir durante toda una semana sobre la estructura y evolución del Universo.

Era un martes 10 de junio de 1958. Wheeler acababa de presentar a los sabios allí reunidos los resultados de sus cálculos recientes, con Kent Harrison y Masami Wakano: los cálculos que habían identificado inequívocamente las masas y circunferencias de todas las posibles estrellas frías muertas. Había cubierto los huecos que faltaban en los cálculos de Chandrasekhar y Oppenheimer-Volkoff, y había confirmado sus conclusiones: la implosión es obligatoria cuando muere una estrella más masiva que aproximadamente 2 soles, y la implosión no puede producir una enana blanca, ni una estrella de neutrones, ni ningún otro tipo de estrella fría muerta, a menos que la estrella moribunda expulse masa suficiente para quedarse por debajo del límite de masa máxima de alrededor de 2 soles.

«De todas las implicaciones de la relatividad general para la estructura y evolución del Universo, esta cuestión del destino de las grandes masas de materia es una de las más desafiantes», afirmó Wheeler. La audiencia podía estar de acuerdo. Luego Wheeler, en una casi repetición del ataque de Arthur Eddington a Chandrasekhar veinticuatro años antes, expuso el punto de vista de Oppenheimer de que las estrellas masivas deben morir implosionando para formar agujeros negros, y luego se opuso a ello: tal implosión «no da una respuesta aceptable», afirmó Wheeler. ¿Por qué no? Esencialmente por la misma razón por la que la había rechazado Eddington; en palabras de Eddington, «debería existir una ley de la naturaleza que impida a una estrella comportarse de esta manera absurda». Pero había una diferencia profunda entre Eddington y Wheeler: mientras que el mecanismo especulativo de Eddington de 1935 para salvar al Universo de los agujeros negros fue inmediatamente tildado de falso por expertos tales como Niels Bohr, el mecanismo especulativo de Wheeler de 1958 no podía en esa época ser demostrado o refutado, y quince años más tarde resultaría ser parcialmente correcto.

La especulación de Wheeler era ésta. Puesto que (en su opinión) la implosión hacia un agujero negro debe ser rechazada como físicamente implausible, «parecería no haber escapatoria a la conclusión de que los nucleones [neutrones y protones] en el centro de una estrella en implosión deben disolverse necesariamente en radiación, y esta radiación debe escapar de la estrella con rapidez suficiente para reducir su masa [por debajo de aproximadamente 2 soles]» y permitirle desviarse hacia el cementerio de las estrellas de neutrones. Wheeler estaba dispuesto a reconocer que tal conversión de nucleones en radiación saliente estaba más allá de los límites de las leyes conocidas de la física. Sin embargo, tal conversión podría ser el resultado del todavía mal comprendido «matrimonio» de las leyes de la relatividad general con las leyes de la mecánica cuántica. Para Wheeler, este era el aspecto más atractivo del «problema de las grandes masas»: lo absurdo de la implosión para formar un agujero negro le obligaba a contemplar un proceso físico enteramente nuevo.

Oppenheimer no quedó impresionado. Cuando Wheeler terminó de hablar, él fue el primero en tomar la palabra. Manteniendo una cortesía que no había mostrado cuando era joven, defendió su propia opinión:

"Yo no sé si masas sin rotación mucho más pesadas que el Sol se dan realmente en el curso de la evolución estelar; pero si lo hacen, creo que su implosión puede describirse dentro del marco de la relatividad general [sin recurrir a nuevas leyes de la física]. ¿No sería una hipótesis más sencilla la de que tales masas sufren una contracción gravitatoria continua y finalmente se aíslan cada vez más del resto del Universo [es decir, forman agujeros negros]?".

Wheeler fue igualmente cortés, pero se mantuvo firme. «Resulta muy difícil creer que el "aislamiento gravitatorio" sea una respuesta satisfactoria», afirmó. La confianza de Oppenheimer en los agujeros negros procedía de los cálculos detallados que él había realizado diecinueve años antes.

El nacimiento de un agujero negro: una primera ojeada

En el invierno de 1938-1939, recién acabado su cálculo de las masas y circunferencias de las estrellas de neutrones con George Volkoff, Oppenheimer estaba firmemente convencido de que las estrellas masivas deben implosionar cuando mueren. El siguiente desafío era obvio: utilizar las leyes de la física para calcular los detalles de la implosión. ¿Qué aspecto tendría la implosión vista por alguien en órbita alrededor de la estrella? ¿Qué aspecto tendría vista por alguien situado en la superficie de la estrella? ¿Cuál sería el estado final de la estrella implosionada, miles de años después de la implosión? Este cálculo no iba a ser fácil. Sus manipulaciones matemáticas serían las más desafiantes que Oppenheimer y sus estudiantes hubieran emprendido nunca: las propiedades de la estrella en implosión cambiarían rápidamente en el curso del tiempo, mientras que la estrella de neutrones de Oppenheimer-Volkoff había sido estática, sin cambios. La curvatura espacio-temporal se haría enorme en el interior de la estrella en implosión, mientras que había sido mucho más modesta en las estrellas de neutrones. Tratar con estas complicaciones requeriría un estudiante muy especial. La elección era obvia: Hartland Snyder.

Snyder era diferente de los demás estudiantes de Oppenheimer. Los otros procedían de la clase media; Snyder era de clase trabajadora. Corría el rumor en Berkeley de que era camionero en Utah antes de hacerse físico. Como recuerda Robert Serber, «Hartland desdeñaba un montón de cosas que eran normales para los estudiantes de Oppie, tales corno apreciar a Bach y Mozart, oír cuartetos de cuerda y amar la comida exquisita y la política liberal».

Escribía William Fowler, del Caltech:

"Oppie era extraordinariamente instruido; sabía de literatura, arte, música, sánscrito. Pero Hartland... él era corno el resto de nosotros, un holgazán más. Le gustaban las fiestas del Kellogg Lab, donde Tommy Lauritsen tocaba el piano y Charlie Lauritsen [director del laboratorio] tocaba el violín y cantábamos canciones de colegiales y canciones de borrachos. De todos los estudiantes de Oppie, Hartland era el más independiente." Hartland también era mentalmente diferente. «Hartland tenía más talento para las dificultades matemáticas que el resto de nosotros —recuerda Serber—. Era muy bueno para mejorar los cálculos rudimentarios que el resto de nosotros hacíamos». Fue esta capacidad lo que le hizo un candidato natural para el cálculo de la implosión.

Antes de embarcarse en el cálculo complicado y completo, Oppenheimer insistió (como siempre) en hacer primero un rápido examen del problema. ¿Cuánto podía aprenderse con sólo un pequeño esfuerzo? La clave para este primer examen fue la geometría de Schwarzschild para el espacio-tiempo curvado fuera de una estrella. Schwarzschild había descubierto su geometría del espacio-tiempo como una solución a la ecuación de campo de la relatividad general de Einstein. Era la solución para el exterior de una estrella estática, una estrella que nunca implosiona, ni explosiona, ni late. Sin embargo, en 1923 George Birkhoff, un matemático de Harvard, había demostrado un notable teorema matemático: la geometría de Schwarzschild describe el exterior de cualquier estrella que sea esférica, incluyendo no sólo estrellas estáticas sino también estrellas en implosión, en explosión o pulsantes.

Así pues, para su rápido cálculo, Oppenheimer y Snyder supusieron simplemente que una estrella esférica, al agotar su combustible nuclear, implosionaría indefinidamente; y, sin explorar qué sucede en el interior de la estrella, calcularon qué aspecto tendría la estrella en implosión para alguien que estuviese muy lejos. Fácilmente infirieron que, puesto que la geometría espacio-temporal fuera de la estrella en implosión es la misma que fuera de cualquier estrella estática, la estrella en implosión tendría un aspecto muy similar a una secuencia de estrellas estáticas, cada una de ellas más compacta que la anterior.

Ahora bien, la apariencia externa de tales estrellas estáticas había sido estudiada dos décadas antes, alrededor de 1920.  Recordemos que cada diagrama de inserción representa la curvatura del espacio en el interior y en las proximidades de una estrella. Para hacer comprensible esta representación, el diagrama muestra la curvatura de sólo dos de las tres dimensiones del espacio: las dos dimensiones de una hoja que yace precisamente en el «plano» ecuatorial de la estrella. La curvatura del espacio en esta hoja se visualiza imaginando que sacamos la hoja de la estrella, y del espacio físico en el que nosotros y la estrella vivimos, y lo trasladamos a un hiperespacio ficticio plano (no curvado). En el hiperespacio no curvado, la hoja puede mantener su geometría curvada sólo balanceándose hacia abajo como un cuenco.

Supongamos una secuencia de tres estrellas estáticas que imitan la implosión que Oppenheimer y Snyder estaban dispuestos a analizar. Las tres estrellas tienen la misma masa, pero cada una de ellas tiene una circunferencia diferente. La primera tiene una circunferencia cuatro veces mayor que la circunferencia crítica (cuatro veces mayor que la circunferencia para la que la gravedad de la estrella se haría tan intensa que formaría un agujero negro). La segunda tiene una circunferencia doble que la circunferencia crítica, y la tercera tiene precisamente la circunferencia crítica. Los diagramas de inserción muestran que cuanto más próxima está la estrella a su circunferencia crítica, más extrema es la curvatura del espacio que la rodea. Sin embargo, la curvatura no se hace infinitamente extrema. La geometría de tipo cóncavo es suave en todas partes, sin vértices abruptos ni puntas o crestas, incluso cuando la estrella está en su circunferencia crítica; es decir, la curvatura espacio-temporal no es infinita y, puesto que las fuerzas gravitatorias de marea (los tipos de fuerzas que tiran de la cabeza y de los pies y producen las mareas en la Tierra) son la manifestación física de la curvatura espacio-temporal, la gravedad de marea no es infinita en la circunferencia crítica.

Ppuesto que el tiempo fluye más lentamente en la superficie de la estrella que muy lejos de ella (dilatación gravitatoria del tiempo), las ondas de luz emitidas desde la superficie de la estrella y recibidas a gran distancia tendrán un periodo de oscilación aumentado y, correspondientemente, una longitud de onda alargada y un color más rojo. La longitud de onda de la luz se desplazará hacia el extremo rojo del espectro a medida que la luz trata de salir del intenso campo gravitatorio de la estrella (desplazamiento gravitatorio hacia e! rojo). Cuando la estrella estática es cuatro veces mayor que su circunferencia critica, la longitud de onda de la luz se alarga en un 15%; cuando la estrella es el doble de su circunferencia critica, el desplazamiento hacia el rojo es de un 41% y cuando la estrella está exactamente en su circunferencia crítica, la longitud de onda de la luz está infinitamente desplazada hacia el rojo, lo que significa que la luz no conserva energía en absoluto y, por lo tanto, ha dejado de existir.

En su cálculo rápido, Oppenheimer y Snyder descubrieron dos cosas de esta secuencia de estrellas estáticas: primero, al igual que estas estrellas estáticas, una estrella en implosión desarrollaría probablemente una fuerte curvatura espacio-temporal a medida que se aproxima a su circunferencia crítica, pero no una curvatura infinita ni, por lo tanto, fuerzas gravitatorias de marea infinitas. Segundo, conforme la estrella implosionase, la luz de su superficie debería desplazarse cada vez más hacia el rojo y, cuando alcanzase la circunferencia crítica, el desplazamiento hacia el rojo se habría hecho infinito, haciendo que la estrella se hiciese completamente invisible. En palabras de Oppenheimer, la estrella debería «aislarse» visualmente de nuestro Universo externo.

¿No había ninguna forma, se preguntaban Oppenheimer y Snyder, de que las propiedades internas de la estrella, ignoradas en este cálculo rápido, pudieran librar a la estrella de su destino de aislamiento? Por ejemplo, ¿podría estar obligada la implosión a proceder tan lentamente que nunca, ni siquiera después de un tiempo infinito, se alcanzase realmente la circunferencia critica?

A Oppenheimer y a Snyder les hubiera gustado responder a estas cuestiones calculando los detalles de una implosión estelar realista. Cualquier estrella real girará, como lo hace la Tierra, al menos un poco. Las fuerzas centrífugas debidas a dicho giro obligarán al ecuador de la estrella a ensancharse, como lo hace el ecuador de la Tierra. Por lo tanto, la estrella no puede ser exactamente esférica. Conforme implosiona, la estrella debe girar cada vez más rápidamente como un patinador que encoge sus brazos, y este giro más rápido provocará que crezcan las fuerzas centrífugas en el interior de la estrella, haciendo más pronunciado el ensanchamiento ecuatorial, suficientemente pronunciado, quizá, para que incluso detenga la implosión, con las fuerzas centrífugas compensando entonces exactamente la atracción de la gravedad.

Cualquier estrella real tiene altas densidades y presiones en su centro, y densidades y presiones más bajas en sus capas externas; cuando implosiona, se desarrollarán aquí y allí grumos de alta densidad como las pasas en un pastel. Además, la materia gaseosa de la estrella, cuando ésta implosiona, formará ondas de choque, análogas a las olas de los maremotos oceánicos, y estos choques pueden expulsar materia y masa de algunas partes de la superficie de la estrella de la misma forma que una ola del océano puede arrojar gotas de agua al aire. Finalmente, la estrella derramará radiación (ondas electromagnéticas, ondas gravitatorias, neutrinos) que se llevará parte de la masa.

A Oppenheimer y a Snyder les hubiera gustado incluir todos estos efectos en sus cálculos, pero hacerlo era una tarea formidable que sobrepasaba con mucho las capacidades de cualquier físico o máquina computadora en 1939. Sólo sería factible con la llegada de los superordenadores en los años ochenta. Por lo tanto, para poder hacer cualquier progreso era necesario construir un modelo idealizado de la estrella en implosión y luego calcular las predicciones de las leyes de la física para dicho modelo. Tales idealizaciones eran el punto fuerte de Oppenheimer: cuando se enfrentaba con una situación terriblemente compleja como ésta, él podía discernir casi infaliblemente qué fenómenos eran de importancia crucial y cuáles eran secundarios.

Para una estrella en implosión había una característica crucial por encima de cualquier otra, creía Oppenheimer: la gravedad descrita por las leyes de la relatividad general de Einstein. Ella, y sólo ella, debería ser completamente tenida en cuenta al formular un cálculo que fuera factible. Por el contrario, la rotación de la estrella y su forma no esférica podían ignorarse; podrían ser de importancia crucial para algunas estrellas en implosión, pero probablemente no tendrían un efecto apreciable para estrellas que girasen lentamente. Oppenheimer no podía en realidad probar esto matemáticamente, pero intuitivamente parecía evidente, y de hecho resultó ser cierto. Análogamente, decía su intuición, el derramamiento de radiación era un detalle de poca importancia, como lo eran las ondas de choque y los grumos de densidad. Además, puesto que (como Oppenheimer y Volkoff habían demostrado) la gravedad puede aplastar cualquier presión en estrellas masivas muertas, parecía que no era peligroso suponer (incorrectamente, por supuesto) que la estrella en implosión no tenía ninguna presión interna: ni presión térmica, ni presión debida a los movimientos de degeneración de los electrones o de los neutrones, ni presión debida a la fuerza nuclear. Una estrella real, con su presión real, debía implosionar de una manera diferente de la de una estrella idealizada sin presión; pero las diferencias de la implosión deberían ser solamente modestas, no grandes, insistía la intuición de Oppenheimer.

Por todo esto, Oppenheimer sugirió a Snyder un problema de cálculo idealizado: estudiar, utilizando las leyes exactas de la relatividad general, la implosión de una estrella supuesta exactamente esférica, sin rotación y sin radiación, una estrella con densidad uniforme (la misma cerca de su superficie que en su centro) y sin ningún tipo de presión interna.

Incluso con todas estas simplificaciones —simplificaciones que iban a generar escepticismo en otros físicos durante los treinta años posteriores— el cálculo era extremadamente difícil. Afortunadamente, Richard Tolman estaba disponible en Pasadena para ayudar. Apoyándose en los consejos de Tolman y Oppenheimer, Snyder desarrolló las ecuaciones que gobiernan toda la implosión y consiguió resolverlas. ¡Ahora tenía todos los detalles de la implosión expresados en fórmulas! Examinando estas fórmulas desde todas las perspectivas posibles, los físicos podrían deducir cualquier aspecto de la implosión: cómo se ve desde fuera de la estrella, cómo se ve desde su interior, cómo se ve en la superficie de la estrella, y así sucesivamente.

Especialmente intrigante es la apariencia de la estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión precisamente de la forma que uno esperaría. Al igual que una piedra arrojada de un tejado, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de la gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto a alta velocidad.

Pero no era así según las fórmulas relativistas de Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica, su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica. Por mucho tiempo que uno espere, si alguien está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Este es el mensaje inequívoco de las fórmulas de Oppenheimer y Snyder.

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurra sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si su movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pudiera parecer, aún había otra predicción más extraña de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

En 1939, cuando Oppenheimer y Snyder hicieron estos descubrimientos, los físicos ya se habían acostumbrado al hecho de que el tiempo es relativo; el flujo del tiempo es diferente medido en diferentes sistemas de referencia que se mueven de diferentes formas a través del Universo. Pero nunca antes había encontrado nadie una diferencia tan extrema entre sistemas de referencia. Que la implosión se congele para siempre medida en el sistema externo estático, pero continúe avanzando rápidamente superando al punto de congelación medida en el sistema de la superficie de la estrella era extraordinariamente difícil de comprender. Nadie que estudiara las matemáticas de Oppenheimer y Snyder se sentía cómodo con semejante distorsión extrema del tiempo. Pero ahí estaba, en sus fórmulas. Uno podría agitar sus brazos con explicaciones heurísticas pero ninguna explicación parecía muy satisfactoria. No sería completamente entendido hasta finales de los años cincuenta.

Considerando las fórmulas de Oppenheimer y Snyder desde el punto de vista de un observador en la superficie de la estrella, es posible deducir los detalles de la implosión aún después de que la estrella se hunda dentro de su circunferencia crítica; es decir, es posible descubrir que la estrella se ha aplastado hasta una densidad infinita y un volumen nulo, y es posible deducir los detalles de la curvatura espacio-temporal en este aplastamiento. Sin embargo, en el artículo que describía sus cálculos Oppenheimer y Snyder evitaron cualquier discusión del aplastamiento. Seguramente Oppenheimer se vio refrenado de discutirlo por su propio conservadurismo científico innato, su falta de disposición a especular.

Si la lectura del aplastamiento final de la estrella en sus propias fórmulas era demasiado para que Oppenheimer y Snyder se enfrentasen a ello, también los detalles fuera de y en la circunferencia crítica eran demasiado extraños para la mayoría de los físicos en 1939. En Caltech, por ejemplo, Tolman era un creyente; después de todo, las predicciones eran consecuencias inequívocas de la relatividad general. Pero nadie más en Caltech estaba muy convencido. La relatividad general sólo había sido verificada experimentalmente en el Sistema Solar, donde la gravedad es tan débil que las leyes de Newton dan casi las mismas predicciones que la relatividad general. Por el contrario, las extrañas predicciones de Oppenheimer-Snyder descansaban en la gravedad ultrafuerte. La relatividad general muy bien podría fallar antes de que la gravedad se hiciese tan fuerte, pensaban muchos físicos; e incluso si no fallaba, Oppenheimer y Snyder podían estar malinterpretando lo que sus matemáticas trataban de decir; e incluso si ellos no estaban malinterpretando sus matemáticas, sus cálculos estaban tan idealizados, tan desprovistos de rotación, grumos, choques y radiación, que no deberían ser tomados en serio.

Tal escepticismo se extendió por todos los Estados Unidos y la Europa Occidental, pero no en la URSS. Allí Lev Landau, todavía recuperándose de su año en prisión, mantenía una «lista dorada» de los artículos de investigación en física más importantes publicados en cualquier parte del mundo. Al leer el de Oppenheimer-Snyder, Landau lo incluyó en su lista, y proclamó a sus amigos y colaboradores que estas últimas revelaciones de Oppenheimer tenían que ser correctas, incluso aunque resultasen extremadamente difíciles de comprender para la mente humana. Tan grande era la influencia de Landau que su opinión prevaleció desde entonces entre los físicos teóricos destacados de la Unión Soviética.

Interludio nuclear

¿Tenían razón Oppenheimer y Snyder o estaban equivocados? La respuesta probablemente habría sido encontrada durante los años cuarenta si no hubiesen intervenido la segunda guerra mundial y los subsiguientes programas intensivos para desarrollar la bomba de hidrógeno. Pero la guerra y la bomba intervinieron, y la investigación sobre cuestiones poco prácticas y esotéricas como los agujeros negros se quedó parada mientras los físicos orientaban todas sus energías al diseño de armas.

Sólo a finales de los años cincuenta los esfuerzos en la investigación armamentística se atenuaron lo suficiente para llevar de nuevo la implosión estelar a la conciencia de los físicos. Sólo entonces los escépticos lanzaron su primer ataque serio a las predicciones de Oppenheimer-Snyder. Uno de los que inicialmente portaban el estandarte de los escépticos, aunque no por mucho tiempo, era John Archibald Wheeler. Un líder de los creyentes, desde el comienzo, era la contrapartida soviética de Wheeler, Yakov Borisovich Zel'dovich.

Los caracteres de Wheeler y Zel'dovich se conformaron al fuego de los proyectos de armas nucleares durante las aproximadamente dos décadas, las de los años cuarenta y cincuenta, en que la investigación en agujeros negros quedó parada. Wheeler y Zel'dovich salieron de su trabajo en investigación armamentística con herramientas cruciales para analizar los agujeros negros: poderosas técnicas computacionales, una profunda comprensión de las leyes de la física y estilos de investigación interactiva en la que ellos continuamente estimularían a los colegas más jóvenes. También salieron llevando un difícil equipaje, un conjunto de complejas relaciones con algunos de sus colegas clave: Wheeler con Oppenheimer; Zel'dovich con Laudan y con Andrei Sajarov.

John Wheeler, recién licenciado en 1933, y ganador de una beca postdoctoral del National Research Council financiada por la Fundación Rockefeller, tenía que elegir dónde y con quién hacer sus estudios postdoctorales. Pudo haber escogido Berkeley y Oppenheimer, como hacían la mayoría de los físicos teóricos del NRC en aquellos días; en lugar de ello, escogió la Universidad de Nueva York y Gregory Breit. «Sus personalidades [las de Oppenheimer y Breit] eran completamente diferentes —dice Wheeler—. Oppenheimer veía las cosas en blanco y negro, y tomaba decisiones rápidas. Breit trabajaba con tonos de gris. Atraído por las cuestiones que requerían larga reflexión, yo escogí a Breit.»

Desde la Universidad de Nueva York, Wheeler se trasladó, en 1933, a Copenhague para estudiar con Niels Bohr; luego ocupó una plaza de profesor ayudante en la Universidad de Carolina del Norte, seguida de otra en la Universidad de Princeton, en Nueva Jersey. En 1939, mientras Oppenheimer y sus estudiantes en California estaban explorando las estrellas de neutrones y los agujeros negros, Wheeler y Bohr en Princeton (donde Bohr estaba realizando una visita) estaban desarrollando la teoría de la fisión nuclear, la ruptura de los núcleos atómicos pesados, tales como el uranio, en fragmentos más pequeños cuando los núcleos son bombardeados por neutrones. La fisión acababa de ser descubierta de una forma bastante inesperada por Otto Hahn y Fritz Strassman en Alemania, y sus implicaciones eran terribles: a partir de una reacción de fisiones en cadena se podría construir un arma de un poder sin precedentes. Pero Bohr y Wheeler no estaban interesados en las reacciones en cadena o las armas; simplemente trataban de comprender cómo se produce la fisión. ¿Cuál es el mecanismo subyacente? ¿Cómo lo producen las leyes de la física?

Bohr y Wheeler tuvieron un éxito notable. Descubrieron cómo las leyes de la física producen la fisión, y predijeron qué núcleos serían más efectivos para sostener una reacción en cadena: el uranio-235 (que sería el combustible de la bomba que destruyó Hiroshima) y el plutonio-239 (un tipo de núcleo que no existe en la naturaleza pero que los físicos norteamericanos aprenderían pronto a fabricar en los reactores nucleares y utilizarían como combustible de la bomba que destruyó Nagasaki). Sin embargo, Bohr y Wheeler no estaban pensando en bombas en 1939; tan sólo querían comprender.

El artículo de Bohr-Wheeler explicando la fisión nuclear fue publicado en el mismo número de la Physical Review en el que se publicó el artículo de Oppenheimer-Snyder describiendo la implosión de una estrella. La fecha de publicación fue el 1 de septiembre de 1939, el mismo día en que las tropas de Hitler invadían Polonia desencadenando la segunda guerra mundial.

Yakov Borisovich Zel'dovich había nacido en una familia judía en Minsk en 1914; ese mismo año su familia se trasladó a San Petersburgo (rebautizado Leningrado en los años veinte, restaurado el primitivo nombre de San Petersburgo en los noventa). Zel'dovich terminó su estudios de grado medio a los quince años y, a continuación, en lugar de entrar en la universidad, fue a trabajar como ayudante de laboratorio en el Instituto Físico-Técnico de Leningrado. Allí aprendió por sí mismo tanta física y química e hizo una investigación tan impresionante que, sin ninguna instrucción universitaria formal, se le concedió un doctorado en física en 1934, a la edad de veinte años.

En 1939, mientras Wheeler y Bohr estaban desarrollando la teoría de la fisión nuclear, Zel'dovich y un amigo íntimo, Yuli Borisovich Khariton, estaban desarrollando la teoría de las reacciones en cadena producidas por la fisión nuclear: su investigación fue desencadenada por una sugerencia intrigante (e incorrecta) del físico francés Francis Perrin, según la cual las erupciones volcánicas podrían estar alimentadas por explosiones nucleares naturales subterráneas que resultarían de una reacción en cadena de fisiones de núcleos atómicos. Sin embargo, nadie, ni siquiera Perrin, había calculado los detalles de tal acción en cadena. Zel'dovich y Khariton —ya entre los mejores expertos mundiales en explosiones químicas— abordaron el problema.

En pocos meses consiguieron demostrar (como, paralelamente, hacían otros en Occidente) que una explosión semejante no puede darse en la naturaleza debido a que el uranio consiste principalmente en uranio-238 y no hay suficiente uranio-235. Sin embargo, concluyeron, si se separase artificialmente el uranio-235 y se concentrase, entonces podría producirse una reacción en cadena explosiva. (Los norteamericanos se embarcarían pronto en una separación semejante para obtener el combustible para su bomba de Hiroshima.) La cortina del secreto no había descendido todavía sobre la investigación nuclear, de modo que Zel'dovich y Khariton publicaron sus cálculos en la más prestigiosa de las revistas soviéticas de física, la Zhurnal Eksperimentalnoi i Teortiches-koi Fiziki, para que lo leyera todo el mundo.

Durante los seis años de la segunda guerra mundial, los físicos de las naciones en guerra desarrollaron el sonar, los desactivadores de minas, los cohetes, el radar, y, fatídicamente, la bomba atómica. Oppenheimer dirigió el «Proyecto Manhattan» en Los Álamos, Nuevo México, para diseñar y construir las bombas norteamericanas. Wheeler fue el científico que dirigió el diseño y construcción de los primeros reactores nucleares del mundo para producción a gran escala, en Hanford, Washington, que dieron el plutonio-239 para la bomba de Nagasaki.

Después de la destrucción de Hiroshima y Nagasaki, con la muerte de vanos cientos de miles de personas, Oppenheimer estaba atormentado: «Si las bombas atómicas se añaden a los arsenales del mundo en guerra, o a los arsenales de las naciones que se preparan para la guerra, entonces llegará el tiempo en el que la humanidad maldecirá el nombre de Los Álamos e Hiroshima».

Pero Wheeler se lamentaba en sentido contrario:

"Cuando me remonto [a 1939 y a mi trabajo sobre la teoría de la fisión con Bohr], siento una gran tristeza. ¿Cómo pudo suceder que yo considerase la fisión primero como físico [simplemente curioso por saber cómo funciona la fisión], y sólo en segundo lugar como un ciudadano [que intenta defender a su país]? ¿Por qué no la consideré primero como ciudadano y sólo en segundo lugar como un físico? Un simple repaso de los registros muestra que entre veinte y veinticinco millones de personas murieron en la segunda guerra mundial, y más en los últimos años que en los primeros. Cada mes que se hubiera abreviado la guerra habría significado salvar de medio millón a un millón de vidas. Entre aquellos a los que se les hubiera salvado la vida habría estado mi hermano Joe, muerto en octubre de 1944 en el frente de Italia. Qué diferente habría sido si la fecha critica [del primer uso de la bomba atómica en la guerra] hubiera sido no el 6 de agosto de 1945, sino el 6 de agosto de 1943."

En la URSS, los físicos abandonaron toda la investigación nuclear en junio de 1941, cuando Alemania atacó a Rusia, pues parecía que otro tipo de física produciría intereses más rápidos para la defensa nacional. Cuando el ejército alemán marchó sobre Leningrado y lo cercó, Zel'dovich y su amigo Khariton fueron evacuados a Kazan, donde trabajaron intensamente en la teoría de la explosión de las bombas de tipo ordinario, tratando de mejorar su poder explosivo. Más tarde, en 1943, fueron convocados a Moscú. Se había hecho evidente, les dijeron, que tanto norteamericanos como alemanes estaban haciendo esfuerzos para construir una bomba atómica. Ellos iban a formar parte de un pequeño y selecto grupo constituido para desarrollar la bomba soviética bajo el liderazgo de Igor V. Kurchatov.

Dos años después, cuando los norteamericanos bombardearon Hiroshima y Nagasaki, el equipo de Kurchatov había conseguido una comprensión teórica total de los reactores nucleares para fabricar el plutonio-239, y había desarrollado varios diseños posibles de bomba; y Khariton y Zel'dovich se habían convertido en los teóricos que dirigían el proyecto.

Cuando Stalin tuvo conocimiento de las explosiones de las bombas atómicas norteamericanas, se quejó a Kurchatov de la lentitud del equipo soviético. Kurchatov defendió a su equipo: en medio de la devastación de la guerra, y con sus limitados recursos, el equipo no podía progresar más rápidamente. Stalin le dijo airadamente que si un niño no llora, su madre no puede saber lo que necesita. Pida cualquier cosa que necesite, ordenó, nada le será negado; y Kurchatov pidió entonces que se iniciase un proyecto intensivo sin trabas para construir una bomba, un proyecto bajo la autoridad última de Lavrenty Pavlovich Beria, el temido jefe de la policía secreta.

Es difícil hacerse una idea de la magnitud del proyecto que Beria puso en pie. Ordenó el trabajo forzado de millones de ciudadanos soviéticos procedentes de los campos de prisioneros de Stalin. Estos zeks, como se les llamaba coloquialmente, excavaron minas de uranio, construyeron factorías para su purificación, reactores nucleares, centros de investigación teórica, centros de verificación de armamentos y pequeñas ciudades autosuficientes para apoyar estos complejos. Las instalaciones dispersadas por todo el país estuvieron rodeadas de niveles de seguridad inauditos en el Proyecto Manhattan de los norteamericanos.

Zel'dovich y Khariton fueron trasladados a una de estas instalaciones, en «un lugar alejado» cuya localización, aunque casi con seguridad bien conocida para las autoridades occidentales a finales de los años cincuenta, no pudo ser revelada a los ciudadanos soviéticos hasta 1990. El complejo se conocía sencillamente como Obyekt («la Instalación»); Khariton se convirtió en su director y Zel'dovich en el cerebro de uno de sus equipos clave de diseño de bombas. Bajo la autoridad de Beria, Kurchatov estableció varios equipos de físicos para estudiar, en paralelo y de forma completamente independiente, cada aspecto del proyecto de la bomba: la redundancia ofrecía seguridad. Los equipos residentes en la Instalación sugerían problemas de diseño a los otros equipos, incluyendo un pequeño equipo dirigido por Lev Landau en el Instituto de Problemas Físicos de Moscú.

Mientras este esfuerzo masivo seguía su curso inexorable, el espionaje soviético estaba consiguiendo a través de Klaus Fuchs (un físico británico que había trabajado en el proyecto norteamericano) el diseño de la bomba norteamericana basada en el plutonio. Difería algo del diseño que Zel'dovich y sus colegas habían desarrollado, de modo que Kurchatov, Khariton y compañía se enfrentaron a una difícil decisión: estaban bajo la presión insoportable de Stalin y Beria en espera de resultados y temían las consecuencias de un fracaso en el ensayo de la bomba, en una era en que el fracaso a menudo significaba la ejecución; sabían que el diseño norteamericano había funcionado en Alamogordo y Nagasaki, pero no podían estar completamente seguros de su propio diseño, y sólo poseían plutonio suficiente para una bomba. La decisión era evidente aunque dolorosa: dejarían en suspenso su propio diseño y orientarían su programa intensivo sobre la base del diseño norteamericano.

Por fin, el 29 de agosto de 1949 —después de cuatro años de esfuerzo intensivo, miserias sin cuento, innumerables muertes de zeks utilizados para el trabajo de esclavos, y el comienzo de una acumulación de residuos procedentes de los reactores nucleares cercanos a Cheliabinsk que explotarían diez años más tarde, contaminando cientos de kilómetros cuadrados de terreno— el programa intensivo se completó. La primera bomba atómica soviética fue explosionada cerca de Semipalatinsk en el Asia soviética, en un ensayo del que fueron testigos el Mando Supremo del Ejército Soviético y los dirigentes del gobierno.

El 3 de septiembre de 1949, un avión WB-29 norteamericano para misiones de reconocimiento meteorológico, que hacía un vuelo de rutina entre Japón y Alaska, descubrió productos de fisión nuclear procedentes del ensayo soviético. Los datos registrados fueron entregados a un comité de expertos, incluyendo a Oppenheimer, para su evaluación. El veredicto fue inequívoco. ¡Los rusos habían probado una bomba atómica!

En medio del pánico subsiguiente (refugios antiatómicos en los patios de las casas; simulacros de emergencia antibomba atómica para los niños en las escuelas; la «caza de brujas» de McCarthy para extirpar espías, comunistas y sus compañeros de viaje del gobierno, el ejército, los medios de comunicación y las universidades), tuvo lugar un profundo debate entre físicos y políticos. Edward Teller, uno de los más innovadores entre los físicos que diseñaron la bomba atómica norteamericana, abogaba por un programa intensivo para diseñar y construir la «superbomba» (o «bomba de hidrógeno»): un arma basada en la fusión de núcleos de hidrógeno para formar helio. Si se pudiera construir, la bomba de hidrógeno seria aterradora. Parecía que no hubiese límite a su poder. ¿Deseaba uno una bomba atómica diez veces más potente que la de Hiroshima, cien veces más potente, mil veces, un millón de veces más potente? Si se pudiese conseguir que la bomba funcionase, podría hacerse tan potente como uno quisiera.

John Wheeler apoyó a Teller: creía que era esencial un programa intensivo para la «super» a fin de contrarrestar la amenaza soviética. Robert Oppenheimer y su Comité Asesor General de la Comisión de Energía Atómica de los Estados Unidos se oponían. No era obvio en absoluto, argumentaban Oppenheimer y su comité, el que una bomba como la que entonces se imaginaba pudiera funcionar, e incluso si funcionara, cualquier superbomba que fuera mucho más poderosa que una bomba atómica ordinaria probablemente sería demasiado pesada para ser transportada en un avión o en un misil. Y además estaban las cuestiones morales, que Oppenheimer y su comité se planteaban de la siguiente forma:

"Nosotros basamos nuestras recomendaciones [en contra de un programa intensivo] en nuestra creencia de que los peligros extremos para la humanidad inherentes a la propuesta superarían con mucho cualquier ventaja militar que pudiera venir de este desarrollo. Debe entenderse claramente que esta es una superarma; pertenece a una categoría totalmente diferente de la de una bomba atómica. La razón para desarrollar semejantes superbombas sería el tener la capacidad de devastar una gran área con una sola bomba. Su uso implicaría la decisión de masacrar a un gran número de civiles. Estamos alarmados por los posibles efectos globales de la radioactividad generada por la explosión de algunas superbombas de magnitud imaginable. Si las superbombas funcionasen, no habría límite inherente a la potencia destructiva que se pueda alcanzar con ellas. Por lo tanto, una superbomba podría convertirse en un arma para un genocidio."

Estos argumentos no tenían ningún sentido para Edward Teller y John Wheeler. Los rusos debían estar avanzando con la bomba de hidrógeno; si Norteamérica no se ponía también en marcha, el mundo libre podría encontrarse en gran peligro, creían ellos. La opinión de Teller y Wheeler prevaleció. El 10 de marzo de 1950, el presidente Truman ordenó un programa intensivo para desarrollar la superbomba.

El diseño de los norteamericanos de 1949 para la superbomba parece haber sido una receta para el fracaso, precisamente lo que el comité de Oppenheimer había sospechado. Sin embargo, puesto que no era seguro que fracasase, y puesto que no se conocía nada mejor, fue continuado intensamente hasta marzo de 1951, cuando Teller y Stanislaw Ulam idearon un diseño radicalmente nuevo que aparecía como una brillante promesa.

La idea de Teller-Ulam era inicialmente sólo una idea para un diseño. Como ha dicho Hans Bethe, «nueve de cada diez ideas de Teller son inútiles. Necesita hombres con más juicio, incluso si son menos dotados, que seleccionen la décima idea, que a menudo es un golpe de genio». Para comprobar si esta idea era un golpe de genio o un fiasco se hacía necesario adentrarse en un diseño concreto y detallado de una bomba, luego realizar cálculos extensivos con los ordenadores más grandes disponibles para ver si el diseño podía funcionar, y luego, si los cálculos predecían el éxito, construir y probar una bomba real.

Se establecieron dos equipos para realizar los cálculos: uno en Los Álamos, el otro en la Universidad de Princeton. John Wheeler dirigió el equipo de Princeton. Su equipo trabajó día y noche durante varios meses para desarrollar un diseño completo de la bomba basado en la idea de Teller-Ulam, y verificar mediante cálculos por ordenador si el diseño funcionaría. Como recuerda Wheeler:

"Hicimos una inmensa cantidad de cálculos. Estábamos utilizando las instalaciones de ordenadores de Nueva York, Filadelfia y Washington; de hecho, una fracción muy apreciable de la capacidad de computación de los Estados Unidos. Larry Wilets, John Toll, Ken Ford, Louis Henyey, Cari Hausman, Dick l'Olivier y otros trabajaron en tres sesiones de seis horas cada día para obtener resultados."

Cuando los cálculos dejaron claro que la idea de Teller-Ulam probablemente funcionaría, se convocó una reunión en el Institute for Advanced Study en Princeton (del que Oppenheimer era director) para presentar la idea al Comité Asesor General de Oppenheimer y a su organismo matriz, la Comisión de Energía Atómica de los Estados Unidos. Teller describió la idea, y luego Wheeler describió el diseño específico de su equipo y la explosión que predecía. Recuerda Wheeler: «Mientras yo empezaba a dar mi charla, Ken Ford corrió hacia la ventana desde el exterior, la levantó y pasó por ella este gran gráfico. Yo lo desenrollé y lo coloqué en la pared; mostraba el avance de la combustión termonuclear [tal como la habíamos calculado] ... El comité no tenía otra opción que concluir que eso tenía sentido ... Nuestro cálculo hizo cambiar de opinión a Oppie».

Oppenheimer ha descrito su propia reacción:

"El programa que teníamos en 1949 [la «receta para el fracaso»] era algo tortuoso sobre lo que se podía argumentar perfectamente que no tenía mucho sentido técnico. Por ello, también se podía argumentar que nadie lo querría aunque se lo diesen hecho. El programa de 1952 [el nuevo diseño basado en la idea de Teller-Ulam] era técnicamente tan correcto que uno no podía discutirlo. Las cuestiones a tratar ahora eran puramente las militares, los problemas humanos y políticos en los que nos veríamos implicados una vez que lo tuviésemos."

Dejando al margen sus profundos recelos sobre cuestiones éticas, Oppenheimer, con los demás miembros de su comité, cerraron filas junto a Teller, Wheeler y los proponentes de la superbomba, y el proyecto continuó a un ritmo acelerado para construir y probar la bomba. Todo funcionó como habían pronosticado el equipo de Wheeler y los cálculos paralelos hechos en Los Álamos.

Los extensos cálculos del diseño del equipo de Wheeler fueron finalmente redactados como el documento secreto Project Matterhorn División B Report 31 o PMB-31. «Me contaron —dice Wheeler— que durante al menos diez años PMB-31 fue la biblia para el diseño de dispositivos termonucleares» (bombas de hidrógeno).

En 1949-1950, mientras Norteamérica estaba en un estado de pánico, y Oppenheimer, Teller y otros estaban debatiendo sobre si debería ponerse en marcha un programa intensivo para desarrollar la superbomba, la Unión Soviética ya estaba a medio camino de un proyecto intensivo propio para la fabricación de su propia superbomba.

En la primavera de 1948, quince meses antes de la primera prueba de la bomba atómica soviética, Zel'dovich y su equipo en la Instalación habían realizado cálculos teóricos sobre un diseño de superbomba similar a la «receta para el fracaso» de los norteamericanos. En junio de 1948 se estableció en Moscú un segundo equipo para la superbomba bajo el liderazgo de Igor Tamm, uno de los más eminentes físicos teóricos soviéticos. Sus miembros eran Vitaly Ginzburg, Andrei Sajarov (que se convertiría en un disidente en los años setenta, y luego en un héroe y santo soviético a finales de los ochenta y en los noventa), Semyon Relen'ky, y Yuri Romanov. Al equipo de Tamm se le encomendó la tarea de comprobar y refinar los cálculos del diseño del equipo de Zel'dovich.

La actitud del equipo de Tamm hacia esta tarea se resume en una expresión de Belen'ky en aquella época: «Nuestro trabajo consiste en lamer el culo de Zel'dovich». Zel'dovich, con su paradójica combinación de una personalidad vigorosa y exigente y una extrema timidez política, no estaba entre los físicos soviéticos más populares. Pero sí estaba entre los más brillantes. Landau, quien como líder de un pequeño equipo subsidiario recibía ocasionalmente órdenes del equipo de Zel'dovich para analizar esta u otra faceta del diseño de la bomba, a veces se refería a él a sus espaldas como «esa zorra, Zel'dovich». Zel'dovich, por el contrario, reverenciaba a Landau como un gran juez de la corrección de las ideas físicas, y como su mejor maestro, aunque Zel'dovich nunca había recibido ningún curso formal de él.

Sólo fueron necesarios algunos meses para que Sajarov y Ginzburg, en el equipo de Tamm, ideasen un diseño mucho mejor para una superbomba que la «receta para el fracaso» que Zel'dovich y los norteamericanos estaban siguiendo. Sajarov propuso construir la bomba como un pastel en capas con capas alternativas de un combustible de fisión pesado (uranio) y un combustible de fusión ligero, y Ginzburg propuso el deuteruro de litio (LiD) como combustible para la fusión. En el intenso estallido de la bomba, los núcleos de litio del LiD se fisionarían en dos núcleos de tritio, y estos núcleos de tritio, junto con el deuterio del LiD, se fusionarían a continuación para formar núcleos de helio, liberando enormes cantidades de energía. El uranio pesado reforzaría la explosión impidiendo que su energía escapase con demasiada rapidez, ayudando a comprimir el combustible de la fusión y añadiendo energía de fisión a la fusión. Cuando Sajarov presentó estas ideas, Zel'dovich percibió inmediatamente lo que daban de sí. El pastel en capas de Sajarov y el LiD de Ginzburg se convirtieron rápidamente en el centro del programa soviético de la superbomba.

Para avanzar más rápidamente con la superbomba, Sajarov, Tamm, Belen'ky y Romanov recibieron la orden de trasladarse de Moscú a la Instalación. Pero no Ginzburg. La razón parece obvia: tres años antes Ginzburg se había casado con Nina Ivanovna, una mujer vivaz y brillante que a principios de los años cuarenta había sido encarcelada bajo la acusación de conspirar para matar a Stalin. Supuestamente ella y sus compañeros conspiradores planeaban disparar a Stalin desde una ventana de la habitación donde ella vivía cuando él pasase por la calle Arbat. Cuando los jueces se reunieron para decidir su destino, se advirtió que su habitación no tenía ninguna ventana que diese a la calle Arbat, de modo que, en una exhibición inusual de gracia, se le perdonó la vida; simplemente fue sentenciada a prisión y luego al exilio, pero no a muerte. Presumiblemente, su encarcelamiento y exilio fueron suficiente para salpicar a Ginzburg, el inventor del combustible LiD para la bomba, y dejarle fuera de la Instalación. Ginzburg, que prefería la investigación en física básica al diseño de la bomba, se alegró, y el mundo de la ciencia cosechó las recompensas: mientras Zel'dovich, Sajarov y Wheeler se concentraban en las bombas, Ginzburg resolvía el misterio de cómo se propagan los rayos cósmicos en nuestra galaxia y, junto con Landau, utilizó las leyes de la mecánica cuántica para explicar el origen de la superconductividad.

En 1949, cuando el proyecto de la bomba atómica soviética empezó a dar resultados, Stalin ordenó que todos los recursos del Estado soviético fuesen asignados, sin pausa, al programa para construir la superbomba. El trabajo de esclavos de los zeks, las instalaciones de investigación teórica, las instalaciones de fabricación, las instalaciones de verificación, los múltiples equipos de físicos dedicados a cada aspecto del diseño y la construcción, todo debía ser concentrado para intentar superar a los norteamericanos en la bomba de hidrógeno. Los norteamericanos, en pleno debate sobre si poner en marcha un programa intensivo sobre la superbomba, no sabían nada de esto. Sin embargo, los norteamericanos tenían una tecnología superior y una ventaja de partida.

El 1 de noviembre de 1952, los norteamericanos hicieron explosionar un dispositivo similar a una bomba de hidrógeno denominado en clave Mike. Mike estaba diseñado para verificar la idea de 1951 de Teller-Ulam, y estaba basado en los cálculos del diseño del equipo de Wheeler y el equipo paralelo en Los Álamos. Utilizaba deuterio líquido como su combustible principal. Para licuar el deuterio y bombearlo hasta la región de la explosión se requería un enorme aparato similar a una factoría. Por consiguiente, ésta no era el tipo de bomba que uno puede transportar en un avión o un misil. En cualquier caso, destruyó totalmente la isla de Elugelab en el atolón Eniwetok en el océano Pacífico; era 800 veces más potente que la bomba que mató a más de 100.000 personas en Hiroshima.

El 5 de marzo de 1953, Radio Moscú anunció, entre música fúnebre, que José Stalin había muerto. Hubo júbilo en Norteamérica y dolor en la Unión Soviética. Andrei Sajarov escribió a su esposa Klava: «Estoy bajo el efecto de la muerte de un gran hombre. Estoy pensando en su humanidad».

El 12 de agosto de 1953, los soviéticos hicieron explosionar su primera bomba de hidrógeno en Semipalatinsk. Apodada Joe-4 por los norteamericanos, utilizaba el diseño de pastel en capas de Sajarov y el combustible de fusión a base de LiD de Ginzburg, y era suficientemente pequeña para poder ser transportada en un avión. Sin embargo, el combustible de Joe-4 no sufría la ignición por el método de Teller-Ulam, y como resultado, Joe-4 era bastante menos potente que el Mike norteamericano: «sólo» alrededor de 30 Hiroshimas, comparado con las 800 Hiroshimas de Mike.

De hecho, en el lenguaje de los físicos que diseñaron la bomba norteamericana, Joe-4 no era una bomba de hidrógeno en absoluto; era una bomba atómica amplificada, es decir, una bomba atómica cuya potencia se amplifica mediante la inclusión de algún combustible de fusión. Tales bombas atómicas amplificadas ya formaban parte del arsenal norteamericano, y los norteamericanos se negaron a considerarlas como bombas de hidrógeno porque su diseño de pastel en capas no las hacía capaces de producir la ignición de una cantidad de combustible de fusión arbitrariamente grande. No había forma de hacer que este diseño constituyese, por ejemplo, un «arma del juicio final» miles de veces más potente que la de Hiroshima.

Pero 30 Hiroshimas no es una cantidad a despreciar, ni lo era la transportabilidad. Joe-4 era en realidad un arma terrible, y Wheeler y otros norteamericanos dieron un suspiro de alivio al ver que, gracias a su propia y auténtica superbomba, el nuevo dirigente soviético, Georgi Malenkov, no podría amenazar a Norteamérica con ella.

El 1 de marzo de 1954, los norteamericanos explosionaron su primera superbomba transportable y alimentada con LiD. Su nombre en clave era Bravo y, como Mike, se basaba en los cálculos del diseño de los equipos de Wheeler y Los Álamos y hacía uso de la idea de Teller-Ulam. Su energía explosiva era de 1.300 Hiroshimas. En marzo de 1954, Sajarov y Zel'dovich concibieron conjuntamente (independientemente de los norteamericanos) la idea de Teller-Ulam, y en unos pocos meses los recursos soviéticos se concentraron en mejorarla para conseguir una auténtica superbomba, una que pudiera tener una potencia destructiva tan grande como cualquiera pudiese desear. Sólo llevó dieciocho meses completar el diseño y construir la bomba. Fue detonada el 23 de noviembre de 1955, con la energía explosiva de 300 Hiroshimas.

Como había sospechado el Comité Asesor General de Oppenheimer, en su oposición al programa intensivo para la superbomba, estas bombas enormemente potentes — y la monstruosa arma de 5.000 Hiroshimas explosionada más adelante por los soviéticos en un intento de intimidar a John Kennedy— no han sido muy atractivas ni para el estamento militar de Estados Unidos ni para el de la URSS. Las armas habituales de los arsenales ruso y norteamericano son alrededor de 30 Hiroshimas, y no de miles. Aunque son verdaderas bombas de hidrógeno, no son más potentes que una bomba atómica grande. Los militares no necesitaban ni deseaban un dispositivo del «juicio final». El único uso de tal dispositivo sería la intimidación psicológica del adversario, pero la intimidación puede ser una cuestión seria en un mundo con líderes corno Stalin.

El 2 de julio de 1953, Lewis Strauss, un miembro de la Comisión de Energía Atómica que había peleado amargamente con Oppenheimer a propósito del programa intensivo para la superbomba, fue nombrado presidente de la Comisión. Una de sus primeras actuaciones en su nuevo cargo consistió en ordenar la retirada de todo el material reservado de la oficina de Oppenheimer en Princeton. Strauss y muchos otros en Washington sospechaban profundamente de la lealtad de Oppenheimer. ¿Cómo podía un hombre leal a Norteamérica oponerse al programa de la superbomba, como él había hecho antes de que el equipo de Wheeler demostrase que la idea de Teller-Ulam iba a funcionar? William Borden, que había sido consejero jefe del Comité Conjunto del Congreso para la Energía Atómica durante el debate de la superbomba, envió una carta a J. Edgar Hoover diciendo: «El propósito de esta carta es exponer mi propia opinión exhaustivamente meditada, basada en años de estudio de la evidencia reservada disponible: creo que es más probable que J. Robert Oppenheimer sea un agente de la Unión Soviética que lo contrario». La credencial de seguridad de Oppenheimer fue cancelada, y en abril y mayo de 1954, simultáneamente con las primeras pruebas norteamericanas con bombas de hidrógeno transportables, la Comisión de Energía Atómica celebró audiencias para determinar si Oppenheimer era o no un riesgo para la seguridad.

En la época de las audiencias, Wheeler estaba en Washington por otros motivos. Él no estaba implicado de ningún modo. Sin embargo, Teller, un íntimo amigo personal, fue a la habitación del hotel de Wheeler la noche anterior a su testimonio, y pasaron horas dando vueltas por la habitación. Si Teller decía lo que realmente pensaba, causaría un grave perjuicio a Oppenheimer. Pero ¿cómo podía no decirlo? Wheeler no tenía dudas; en su opinión, la integridad de Teller le obligaría a testificar en pleno.

Wheeler acertó. Al día siguiente Teller, adoptando un punto de vista que Wheeler comprendía, dijo:

"En gran número de ocasiones he visto actuar al doctor Oppenheimer ... de una forma que para mí resultaba extraordinariamente difícil de comprender. Yo discrepaba absolutamente de él en numerosas cuestiones y sus acciones francamente me resultaban confusas y complicadas. En este sentido creo que preferiría ver los intereses vitales del país en unas manos que yo pudiera comprender mejor, y por consiguiente tener más confianza .., Creo, y esto es simplemente una cuestión de creencia y no tengo ninguna prueba de ello, ninguna información real detrás de esta creencia, que el carácter del doctor Oppenheimer es tal que él no haría consciente y voluntariamente nada enfocado a poner en peligro la seguridad de este país. Por lo tanto, en la medida en que su pregunta pueda insinuar esto, yo diría que no veo ninguna razón para negar la credencial. Si de lo que se trata es de la prudencia y juicio demostrados en las actuaciones desde 1945, entonces yo diría que sería más prudente no conceder la credencial."

Casi todos los demás físicos que testificaron lo hicieron inequívocamente en apoyo de Oppenheimer, y se quedaron estupefactos ante el testimonio de Teller. A pesar de esto, y a pesar de la ausencia de evidencia creíble de que Oppenheimer fuera «un agente de la Unión Soviética», se impuso el clima de los tiempos: Oppenheimer fue declarado un riesgo para la seguridad y se le negó la restitución de su credencial de seguridad.

Para la mayoría de los físicos norteamericanos, Oppenheimer se convirtió al instante en un mártir y Teller en un villano. Teller sufriría el ostracismo de la comunidad física para el resto de su vida. Pero para Wheeler, el mártir fue Teller: había «tenido el valor de expresar su juicio honesto, poniendo la seguridad de su país por delante de la solidaridad de la comunidad de los físicos», creía Wheeler. Tal testimonio, en opinión de Wheeler, «merecía consideración», no el ostracismo. Andrei Sajarov, treinta y cinco años más tarde, coincidiría en esta opinión.

                                               © 1982 Javier de Lucas